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Abstract

We present a class of nonlinear dynamic viscoelastic models for materials subjected
to shear stress. The model equations are based on a continuum variation of a reptation
model in which chemically cross-linked (CC) systems of molecules act as constraint
boxes per unit volume for physically constrained (PC) systems of molecules. Results
from validating the model with dynamic shear experiments are given and a stability
analysis for the corresponding linearized systems is discussed.

1 Introduction

In this paper we derive for the first time a continuum model combined with molecular based
internal dynamics for shear deformations in viscoelastic materials. The resulting partial
differential equation model is coupled to ordinary differential equations for internal strains
via a nonlinear stick–slip molecular theory. An initial step toward validating the models
with carefully designed experiments is discussed.

Various molecular and phenomenological models have been proposed to model rubber de-
formations. A more scientifically satisfactory model can be obtained by combining molecular
and continuum mechanics approaches. The fundamental ideas originate in the presentations
of Doi and Edwards [8] and Johnson and Stacer [11] as extended in [4, 5]. To make the
presentation in this paper self contained we first briefly summarize some of the background
material presented in [3, 4, 5].

A dynamic model for rubber viscoelasticity has been proposed in [11] based on a con-
tinuum simulation of the reptation model considered in [8]. In step-strain relaxations of
polymers with constraint (stick-slip) theory, PC-molecules deform with CC-molecules, con-
tract and creep to return to a lower energy, higher entropy state. As a result, the total
energy density at a constant strain dissipates in time and viscoelastic behavior results.

Such a linear continuum model of rubber viscoelasticity is developed in [11] by considering
the CC-linked molecules as providing cells or boxes with entrapped molecular segments and
placing a unit cell or box at each point of the rubber continuum. This approach was extended
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to nonlinear models for rubber undergoing tensile deformations in [4, 5]. Here we consider
the case where the CC-box experiences a shear stress as a result of which the PC-molecules
undergo a parallel deformation. In our formulation the PC-molecules act as internal variables
in the relaxation of the CC-box.

2 Continuum model of Johnson and Stacer

When the Johnson–Stacer [11] CC-system experiences shear deformations, the PC-system
undergoes deformation along with it. The relaxation of the PC-system is determined by
the history of the CC-system along with thermodynamic considerations. On the other hand
the PC-system deformation acts as an internal variable affecting the relaxation of the CC-
system. The tendency for the PC-molecule to return to a lower energy and higher entropy
configuration forms the basis of the viscoelastic model in the deformation process. A PC-
molecule entrapped in a CC-molecular box undergoes a deformation in the direction of the
shear when the CC-box experiences shear. After the initial induced stress, the PC-molecule
relaxes even if the CC-box remains deformed. Let the CC-constraint tube have length L(t)
and the representative entrapped PC-molecule have length `(t). The model in [11] assumes
that the length of the CC-tube is approximated as a step function of time and `(0) = L(0).
Suppose instantaneous step-strain deformation of the CC-system results in the PC-molecule
having length `∗. A model of the PC-molecule returning to its original contour length is
given by

`(t) = `(0) + [`∗ − `(0)] e−t/τ

If the initial stretch for the CC-box is ∆L0, relating the stretches in the form
∆`0

∆L0

=
`0

L0
leads to the relation

∆`0 =

(
`0

L0

)
∆L0.

Then in the time interval t0 < t < t1 we have

`(t) = `0 +
`0

L0

∆L0e
−(t−t0)/τ ,

where τ is the relaxation time for the slip motion of the PC-molecule.
Setting t = t1, we have

`(t1) = `0 +
`0

L0

∆L0e
−(t1−t0)/τ ,

L1 = L0 + ∆L0.

Next we suppose that the CC-box is subjected to an instantaneous shear step deformation
∆L1 at t = t1. For t in the time interval (t1, t2) we have

`(t) = `0 + [(`1 + ∆`1)− `0] e
−(t−t1)/τ

= `0 +
`0

L0

∆L0e
−(t−t0)/τ +

`1

L1

∆L1e
−(t−t1)/τ .
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Similarly, after another instantaneous shear step deformation ∆L2 at t = t2, for t2 < t < t3
we have

`(t) = `0 +
`0

L0

∆L0e
−(t−t0)/τ +

`1

L1

∆L1e
−(t−t1)/τ

+
`2

L2

∆L2e
−(t−t2)/τ .

Following [11] and taking the limit, as ∆ti → 0, of a succession of such step strains, we are
led to the formula

`(t) = `0 +

∫ t

0

`(s)

L(s)

dL(s)

ds
e−(t−s)/τds (2.1)

for the length of the PC-molecule.
We make the following observation for the linear theory that will be subsequently modified

for a nonlinear theory. If ∆`i and ∆Li represent instantaneous step-stretches at t = ti, we
have assumed the fundamental relationship

∆`i

∆Li

=
`i

Li

, (2.2)

where `i = `(ti), Li = L(ti).

3 Shear deformation in the CC-box and deformation

of the PC-molecule

A deformation that is close to the axial extension and to which we can readily apply the
continuum ideas of Johnson and Stacer is generalized simple shear as depicted in Figure 1.
We suppose that the unit CC-box undergoes a deformation of the type x → x+u(y), y → y,
z → z.

u(y)

y

x

Figure 1: Simple shear.
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The configuration gradient [1, 2] for this deformation is given by

A =




1 u′(y) 0
0 1 0
0 0 1




The configuration gradient A can be written in a unique way as a product of a stretch tensor
E and rotation R as

A = ER,

where E2 = A∗A. The eigenvalues ξ1,ξ2, ξ3 of A∗A are given by

ξ1 = 1 +
1

2
[u′(y)]

2
+ u′(y)

√
1 +

1

4
[u′(y)]2

= 1 + u′(y) +
1

2
[u′(y)]

2
+

1

8
[u′(y)]

3 − . . . (3.1)

ξ2 = 1 +
1

2
[u′(y)]

2 − u′(y)

√
1 +

1

4
[u′(y)]2

= 1− u′(y) +
1

2
[u′(y)]

2 − 1

8
[u′(y)]

3
+ . . .

ξ3 = 1.

We note that ξ1ξ2 = 1 and thus also ξ1ξ2ξ3 = 1. For small deformations we set

λ1c =
√

ξ1 = 1 +
1

2
u′(y) +

1

4
[u′(y)]

2
+

1

16
[u′(y)]

3 ∓ . . .

λ2c =
√

ξ2 = 1− 1

2
u′(y) +

1

4
[u′(y)]

2 − 1

16
[u′(y)]

3
+ . . . (3.2)

λ3c = 1.

The quantities λ1c, λ2c, λ3c are the principal stretches for the CC-shear deformations.
Although the CC-box experiences shear deformation, the entrapped PC-molecules expe-

rience deformations that can be simple shear, simple elongation, or a combination thereof,
depending on the orientation of the PC molecule in the entanglement with the CC-box. In
any case, we assume that the PC deformation δup is in the same direction as the CC-box
shear, and thus the principal stretches for the PC-molecules may be assumed to obey the
relationships

λ2p = λ3p =
1√
λ1p

. (3.3)

To develop relationships between the principal stretches λic and λip we use (2.1) and (2.2).
The equation (2.1) suggests that we write

λ1p = 1 +

∫ t

0

λ1p(s)

λ1c(s)

dλ1c(s)

ds
e−(t−s)/τds. (3.4)

The equation (2.2) further suggests that we assume the relationship

∂λip

∂λjc

=
λip

λjc

δij, (3.5)
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where δij is the Kronecker delta.
In (3.2) we assume that u also depends on time. Thus,

λ1c = 1 +
1

2
∂yu(t, y) +

1

4
[∂yu(t, y)]2 +

1

16
[∂yu(t, y)]3 ∓ . . .

λ2c = 1− 1

2
∂yu(t, y) +

1

4
[∂yu(t, y)]2 − 1

16
[∂yu(t, y)]3 ± . . . (3.6)

λ3c = 1.

Using (3.6), we obtain from (3.4) the equation

λ1p = 1 +

∫ t

0

λ1p(s)

(
1− 1

2
∂yu(s, y) +

3

8
[∂yu(s, y)]3 + . . .

)
·

(
1

2
∂s∂yu(s, y) +

1

2
∂yu(s, y)∂s∂yu(s, y) + . . .

)
· e−(t−s)/τds. (3.7)

From (3.7) we find

λ1p ≈ 1 +

∫ t

0

λ1p(s)

(
1− 1

2
∂yu(s, y)

)
· 1

2

∂2

∂s∂y
u(s, y)e−(t−s)/τds. (3.8)

Setting λ1p ≈ 1 + δup where δup = δup(t, y), we see from (3.8) that

δup(t, y) ≈ 1

2
∂yu(t, y)− 1

2τ

∫ t

0

∂yu(s, y)e−(t−s)/τds

+

∫ t

0

[
δup − 1

2
∂yu

]
1

2
∂s∂yu(s, y)e−(t−s)/τds− 1

2
∂yu(0, y)e−t/τ . (3.9)

Next, let (assume that ∂yu(0, y) = 0)

w = δup − 1

2
∂yu(t, y).

Then from (3.9)

∂tw +

(
1

τ
− 1

2

∂2u

∂t∂y

)
w = − 1

2τ
∂yu(t, y).

Thus

δup(t, y) ≈ 1

2
∂yu(t, y)− 1

2τ

∫ t

0

e−(t−s)/τ∂yu(s, y)ds

− 1

τ

∫ t

0

e−(t−s)/τ

[
1

2
(∂yu(t, y)− ∂yu(s, y)) +

1

4
(∂yu(t, y)− ∂yu(s, y))2

]
·

1

2
∂yu(s, y)ds.

From this last equation we are persuaded to make the approximation

δup(t, y) =
1

2
∂yu(t, y)− 1

2τ

∫ t

0

e−(t−s)/τ∂yu(s, y)ds. (3.10)
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4 The dynamics equation

We proceed to write the dynamic equation for a particular rubber material considered in
[11]. For this particular material the energy density proposed in [11] consists of two parts,
Wcc and Wpc, where Wcc is the contribution to the energy density of a unit CC-box from the
cross-linked molecules constituting the box. A contribution to the energy density function
from entrapped PC-molecules is denoted Wpc. The Wcc and Wpc proposed in [11] are given
by

Wcc = 105
(
λ2

1c + λ2
2c + λ2

3c − 3
)

+

103
(
λ2

1cλ
2
2c + λ2

1cλ
2
3c + λ2

2cλ
2
3c − 3

)

Wpc = 169
(
λ2

1p + λ2
2p + λ2

3p − 3
)

+ 0.0138
(
λ2

1p + λ2
2p + λ2

3p − 3
)2

+

7.89
(
λ2

1pλ
2
2p + λ2

1pλ
2
3p + λ2

2pλ
2
3p − 3

)3
,

where the specific numbers in these expressions are derived from validation with experimental
data of Young and Danik (see [10]). Using the fact λ2

1c = ξ1 and λ2
2c = ξ2 and (3.1), we find

Wcc = 208u2
y + au3

y + · · · .

Thus

∂Wcc

∂uy

= 416uy + a2u
2
y + a3u

3
y + · · · ≡ ĝe(uy) ≈ 416uy. (4.1)

Next using (3.3) we have

Wpc = 169

(
λ2

1p +
2

λ1p

− 3

)
+ 0.0138

(
λ2

1p +
2

λ1p

− 3

)2

+ 7.89

(
2λ1p +

1

λ2
1p

− 3

)3

,

∂Wpc

∂λ1p

= 169

(
2λ1p − 2

λ2
1p

)
+ 0.0276

(
λ2

1p +
2

λ1p

− 3

)(
2λ1p − 2

λ2
1p

)

+ 23.67

(
2λ1p +

1

λ2
1p

− 3

)2 (
2− 2

λ3
1p

)
.

Recalling λ1p ≈ 1 + δup we have
∂Wpc

∂λ1p

≈ 1014δup.
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Using (3.5) we have

∂Wpc

∂λ1c

=
∂Wpc

∂λ1p

∂λ1p

∂λ1c

=
∂Wpc

∂λ1p

λ1p

λ1c

λ1p

λ1c

≈ 1 + δup

λ1c

≈ 1 + δup − 1

2
∂yu− 1

2
δup∂yu +

1

4
(∂yu)2 + . . .

∂Wpc

∂uy

=
∂Wpc

∂λ1c

∂λ1c

∂uy

≈ 1014δup

(
1 + δup − 1

2
∂yu− 1

2
δup∂yu +

1

4
(∂yu)2 + . . .

)
1

2

= 512δup

(
1 + δup − 1

2
uy − 1

2
δup∂yu +

1

4
(∂yu)2 + . . .

)

≈ 512δup.

Thus to first order we have
∂Wpc

∂uy

≈ 512δup. (4.2)

Now we consider the shear vibration of a rubber sample with a square cross sectional area
Ac and density ρ. From (4.2) and (3.10)

∂Wpc

∂uy

≈ 256∂yu(t, y)− 256

τ

∫ t

0

e−(t−s)/τ∂yu(s, y)ds. (4.3)

The shear dynamics of the rubber sample are given by

ρAc∂
2
t u− ∂y

(
∂Wcc

∂uy

+
∂Wpc

∂uy

)
= F,

where F is the external load. Using (4.3) and only first order terms, we have our desired
linear equation

ρAc∂
2
t u− 672Ac∂

2
yu(t, y) +

256Ac

τ

∫ t

0

e−(t−s)/τ∂2
yu(s, y)ds = F. (4.4)

5 A nonlinear reptation model

In the previous section the deformations of the PC-molecules and the CC-molecules were
assumed to be related according to the formula

∆`

∆L
=

`

L

leading to the relationship
∂λjp

∂λic

=
λjp

λic

δij

between the stretches.
The above relationship has the merit that it would make it feasible for the PC-molecule to
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remain within the constraining tube during relaxation. However, a more realistic and general
relationship is of the form

∆`

∆L
= f(t,

`

L
), or

∂λjp

∂λic

= f(t,
λjp

λic

)δij, (5.1)

where f is a material dependent nonlinearity. With this more general relationship between
the deformations, the relaxation process after an instantaneous step-strain in the time inter-
val 0 = t0 < t < t1 is given by

`(t) = `0 + f(t0,
`0

L0

)∆L0e
(t−t0)

τ .

In the time interval (tm−1, tm),m ≥ 1 the relaxation process has the form

`(t) = `0 +
m−1∑
i=0

f(ti,
`i

Li

)∆Lie
−(t−ti)

τ .

In the limit, as ∆t = ti − ti−1 tends to zero, we have

`(t) =

∫ t

0

f(s,
`(s)

L(s)
)
dL(s)

ds
e−

(t−s)
τ ds.

In differential form we have

d`

dt
= f(t,

`(t)

L(t)
)
dL

dt
− 1

τ
(`(t)− `0). (5.2)

We can write (5.2) in terms of the stretches of the PC-molecules λip, i = 1, 2, 3 and those
of the CC-molecules λic, i = 1, 2, 3. When writing (5.2) in terms of the stretches, we take
`0 = 1. In particular, setting ε1 = δup = λ1p − 1, we have from (5.2) the equation

ε̇1 +
1

τ
ε1 = λ̇1cf(t,

1 + ε1

λ1c

). (5.3)

In the problem at hand λ2
1cλ

2
2c = 1, and from (3.2),

1

λ1c

= λ2c = 1− 1

2
u′(y) +

1

4
u′(y)2 − 1

16
u′(y)3 ± · · ·

= 1− ε + ε2 − 1

2
ε3 ± · · · ,

where we set ε =
1

2
u′(y). Next we write (5.3) as

ε̇1 +
1

τ
ε1 = ε̇(1 + 2ε +

3

2
ε2 + · · · )

·f(t, 1 + ε1 − ε− ε1ε + ε2 + ε1ε
2 − 1

2
ε3 ± · · · ).
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In the case f is independent of t, which we assume henceforth, we expand f about the point
1 and obtain

ε̇1 +
1

τ
ε1 = ε̇(1 + 2ε +

3

2
ε2 + · · · )

·
{

f(1) + ḟ(1)(ε1 − ε− ε1ε + ε2 + ε1ε
2 − 1

2
ε3 +− · · · ) + · · ·

}
.

(5.4)

In Section 3, f(t,
λ1p

λ1c

) =
λ1p

λ1c

. In this case (5.4) becomes

ε̇1 +
1

τ
ε1 = ε̇(1 + 2ε +

3

2
ε2 + · · · )

·
{

1 + ε1 − ε− ε1ε + ε2 + ε1ε
2 − 1

2
ε3 ± · · ·+ · · ·

}
.

(5.5)

We note that a special case of this latter equation is

ε̇1 +
1

τ
ε1 = ε̇(1 + 2ε +

3

2
ε2)

=
d

dt
(ε + ε2 +

1

2
ε3),

which is itself a special case of the general model

ε̇1 +
1

τ
ε1 =

d

dt
(b1ε + b2ε

2 + b3ε
3). (5.6)

These, of course, are both special cases of the general model

ε̇1 +
1

τ
ε1 = gv(ε, ε̇). (5.7)

Neglecting all higher order terms in (5.5), we find

ε̇1 +
1

τ
ε1 = ε̇, (5.8)

which is (3.10) of Section 4.
The dynamics of the rubber (see Section 4) are given by

ρAc∂
2
t u−

∂

∂y
(
∂Wcc

∂uy

+
∂Wpc

∂uy

) = F. (5.9)

Now

∂Wpc

∂uy

=
∂Wpc

∂λ1c

∂λ1c

∂uy

=
∂Wpc

∂λ1p

∂λ1p

∂λ1c

∂λ1c

∂uy

≈ ∂Wpc

∂λ1p

f(
λ1p

λ1c

)
1

2

= 512ε1f(1 + ε1 − ε− ε1ε + ε2 + ε1ε
2 − 1

2
ε3 ± · · · ).

9



From (5.9) we have now

ρAc∂
2
t u− ∂y{ge(ε) + 512ε1f(1 + ε1 − ε− ε1ε + ε2 + ε1ε

2 − 1

2
ε3 ± · · · )} = F, (5.10)

where ge(ε) = 832ε + a2ε
2 + · · · . This is a general nonlinear model based on the nonlinear

constitutive relationship involving f of (5.1) and that of (4.1). In Section 3 we had the

simpler proportional assumption f(
λ1p

λ1c

) =
λ1p

λ1c

as well as ge(ε) ≈ 832ε. In that case (5.10)

becomes

ρAc∂
2
t u− ∂y(832ε + 512ε1(1 + ε1 − ε− ε1ε + ε2 + ε1ε

2 − 1

2
ε3 +− · · · )) = F. (5.11)

If we retain only first order terms in ε, ε1 in (5.11) we obtain the equation

ρAc∂
2
t u− ∂y(832ε + 512ε1) = F.

Thus, a linearization of (5.11) and (5.5) gives

ρAc∂
2
t u− ∂y(832ε + 512ε1) = F

ε̇1 +
1

τ
ε1 = ε̇,

which, recalling (3.10) and ε =
1

2
uy, we see is the same as (4.4) of Section 4.

6 The nonlinear model and simple shear experiments

Model development and identification processes (inverse problems with experimental data)
for nonlinearities and parameters were carried out for filled elastomers undergoing simple
shear deformation. A series of dynamic experiments were designed and carried out, each
involving one or more “double sandwich” fixtures with layers of filled rubber at the interfaces
as depicted in Figure 2.

Load Cell

Figure 2: Schematic of the double lap simple shear experimental device.
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The side bars were fixed, while the middle bar was either perturbed by an impulsive
hammer hit or provided with an initial strain and then released. In all experiments, both
accelerometer and load cell data were collected for the motion of the middle bar. The samples
consisted of A225 highly filled rubber with dimensions 0.1×0.1×0.8 in. with two such layers
in each of the double lap devices as seen in Figure 2.

For simple shear, the model developed and used is based on (5.10) with Kelvin-Voigt
damping added as given by

ρAcutt − CDutyy − ∂

∂y
Acσ = 0, 0 < y < `, (6.1)

{Mutt(t, `) + CDuty(t, `) + Acσ(t, `)} = F (t) + Mg, (6.2)

u(t, 0) = 0, (6.3)

u(0, y) = u0 ut(0, y) = 0. (6.4)

Here ρ is the mass density, Ac is the cross sectional area of the sample, CD is a damping
coefficient, M is the mass of a tip body possibly attached to the middle bar (M = 0 if the
tip mass is not included in the experimental set-up), F (t) is an applied (at y = `) external
force when present, and σ is the elastic and viscoelastic shear stress given in general form by

σ(ε, ε1) = ge(ε) + ε1 (6.5)

ε̇1 +
1

τ
ε1 = gv(ε, ε̇), (6.6)

as developed in the previous sections of this paper.
For each experimental data set, a least-squares minimization problem was carried out

to identify the unknown parameters q in the nonlinearities ge and gv using the accelerom-
eter data {ai} (the load cell data was not used in the optimization procedure) with the
corresponding model solutions utt(ti, `; q) in

J(q) =
1

2

n∑
i=1

|ai − utt(ti, `; q)|2. (6.7)

The resulting optimized model was then used to generate load cell values which were then
compared to the corresponding experimental load cell data.

Initial experiments involved one double-lap device with an attached tip mass (to produce
deformations in shear sufficient for observation) which was excited with a hammer hit on the
middle bar. The experiment was performed with highly filled rubber samples with different
amounts of attached extra mass. In general, we found that the data collected with no extra
mass on the sample could be approximated well with the above type models even when
the viscoelastic response function gv is assumed to be linear. This is not surprising, since
the maximum strain levels in these type of experiments were below 10%. However, when
extra mass was involved to achieve larger deformations and strain levels (this required huge
masses!), the experiment did not provide suitable data, since additional “tilting” modes
became excited and these could not be accounted for by the above one-dimensional model.
We subsequently redesigned the experimental device to consist of a hub with four identical
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arms, each containing a double lap device as pictured in Figure 2. The arms could be latched
down so as to produce initial strains of up to 100%. Upon quick release, this device produced
very clean free–release data for the samples undergoing simple shear with no additional
deformations; these proved adequate for our model estimation and validation. Thus, the
experiments consisted of latching down the four arms of the fixture at some prescribed initial
strain (50%, 70% and 100% strain) and then suddenly releasing the latch. We began with
approximately 50% initial shear strain and repeated each release experiment three times.
We again collected both accelerometer and load cell data. The sequence of experiments was
repeated with about 70% and 100% initial shear strains, respectively.

For our model fitting we used a number of different constitutive relationships between
the stress and the strain, including linear and nonlinear functions for both ge and gv. The
identification problem was first performed for the data obtained for 100% initial strain.
We quickly found that a linear viscoelastic response function gv was no longer adequate to
describe the data in this higher strain regime. Thus, we were led to models of the form

σ = g̃e(
∂u

∂y
) + CD

∂2u

∂t∂y
+ ε1, ε̇1 +

1

τ
ε1 = g̃v(

∂u

∂y
,

∂2u

∂t∂y
),

where g̃e and g̃v are cubic polynomials and g̃v may or may not depend on
dε

dt
=

1

2

∂2u

∂t∂y
, (i.e.,

g̃vi = g̃vd if the nonlinearities are the same in both increasing and decreasing deformation).
The notion that one might need g̃v

′s of the form

g̃v(uy, u̇y) =

{
g̃vi(uy) if u̇y ≥ 0, (uy increasing)
g̃vd(uy) if u̇y < 0, (uy decreasing),

(6.8)

was motivated by earlier results [4, 6, 7] with similar materials undergoing tensile deforma-
tions where such models were necessary because stress-strain curves clearly indicated that
the nonlinearities are distinctly different for contraction versus elongation.

The parameters in a linear g̃vi = g̃vd that provided the best fit for the 100% initial strain
data (see Figure 3) did not produce a model that described well the 70% and 50% initial strain
experiments. Thus we next used the full nonlinear hysteretic model (i.e., g̃vi 6= g̃vd in (6.8)
taken as cubic nonlinearities) to approximate the 100% initial strain data and found several
different sets of cubic nonlinearities that gave a very good approximation. Again, earlier
efforts with these materials suggested that cubic (as opposed to higher order) nonlinearities
might be sufficient to capture the dynamics. To find a set that also provides a good fit for
the 70% initial data we optimized on both data sets simultaneously (i.e., we used both data
sets in the cost criterion (6.7)). The best fit in this case is depicted in Figures 4 and 5. We
found that the set of parameters identified in this case described both data sets with very
good accuracy (Figures 4,5). Finally, we found that the 50% initial strain data sets were the
most difficult to use with the models (see Figure 6). Our investigations suggest that in this
data, the deformations are likely too small to obtain reliable fits due to unfavorable signal
to noise ratios.
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Figure 3: Hysteretic model with g̃vi = g̃vd linear for 100% initial shear strain.
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Figure 4: Model with g̃vi 6= g̃vd cubic best fit compared with 100% initial shear strain data
response.
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Figure 5: Model with the same (as in Figure 4) g̃vi 6= g̃vd cubic best fit compared with 70%
initial shear strain data response.
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Figure 6: Best model with g̃vi 6= g̃vd cubic compared with 50% initial shear strain data
response.
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7 Analysis of the linear model equation

In this section we analyze the linear model equation (4.4) and make some conclusion about
the model. Dividing by ρAc in (4.4) we obtain the equation

∂2
t u−

672

ρ
∂2

yu +
256

ρτ

∫ t

0

e−(t−s)/τ∂2
yu(s, y)ds =

1

ρAc

F. (7.1)

We will later on solve (7.1) with boundary and initial conditions given by

u(t, 0) = 0,
∂u

∂y
(t, b) = G(t), u(0, y) = ∂tu(0, y) = 0. (7.2)

To facilitate our analysis, we set

v =
672

ρ
u− 256

ρτ

∫ t

0

e−(t−s)/τu(s, y)ds. (7.3)

Then from (7.1) we obtain

vtt +
256

672τ
vt − 416

672τ 2
v − 672

ρ
vyy +

(
416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(
vs +

1

τ
v

)
ds

=
672

ρ2Ac

F − 672

ρ

(
416

672τ

)2

e−
416
672τ

tu(0, y). (7.4)

We rewrite the initial and boundary conditions in (7.2), using (7.3), as follows:

v(t, 0) = 0

ρ

464

∫ t

0

e−
416
672τ

(t−s)

[
vsy(s, b) +

1

τ
vy(s, b)

]
ds + ∂yu(0, b)e−

416
672τ

t = G(t)

v(0, y) = 0 (7.5)

vt(0, y) +
1

τ
v(0, y) = 0.

The second equation in (7.5) can be written as

ρ

672

[
vy(t, b)− e−

416
672τ

tvy(0, b)
]

+
256ρ

(672)2τ

∫ t

0

e−
416
672τ

(t−s)vy(s, b)ds + G(0+)e−
416
672τ

t

= G(t). (7.6)

We next consider the Sturm-Liouville problem

−Z ′′ − λZ = 0

Z(a)− h0Z
′(a) = 0, h0 ≥ 0

Z(b)− h1Z
′(b) = 0, h1 ≥ 0.

We recall that there is a corresponding sequence of eigenvalues 0 < λ1 < λ2 < . . . < λn <
. . . ↗∞ and corresponding orthonormal eigenfunctions ϕ1, ϕ2, . . . , ϕn, . . ..
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Consider a solution of (7.4)-(7.6) in the form

v(t, y) =
∞∑

n=1

vn(t)ϕn(y).

Writing

f(t, y) =
∞∑

n=1

fn(t)ϕn(y),

where

f(t, y) =
672

ρ2Ac

F − 672

ρ

(
416

672τ

)2

e−
416
672τ

tu(0, y),

we have from (7.4) the equation

v
′′
n(t) +

256

672τ
v
′
n +

(
672

ρ
λn − 416

672τ 2

)
vn

+

(
416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(
v
′
n(s) +

1

τ
vn(s)

)
ds = fn(t). (7.7)

Set

wn(t) =

(
416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(
v
′
n(s) +

1

τ
vn(s)

)
ds.

Then

w
′
n(t) =

(
416

672τ

)2 (
v
′
n(t) +

1

τ
vn(t)

)
− 416

672τ
wn(t).

Let

un
1 (t) = vn(t)

un
2 (t) = v

′
n(t)

un
3 (t) = wn(t) (7.8)

d =
416

672τ

∆n =
672

ρ
λn − 416

672τ 2
.

From (7.7) we have

d

dt




un
1

un
2

un
3


 =




0 1 0

−∆n
−256

672τ
−1

d2

τ
d2 −d







un
1

un
2

un
3


 +




0
fn

0


 (7.9)
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Next define

An =




0 1 0

−∆n
−256

672τ
−1

d2

τ
d2 −d


 .

Then

|ξI − An| = ξ3 +

(
256

672τ
+ d

)
ξ2 +

(
d2 +

256

672τ
d + ∆n

)
ξ + d∆n +

d2

τ
.

The Routh-Hurwitz Theorem guarantees that the roots of the polynomial equation

z3 + a1z
2 + a2z + a3 = 0

have negative real parts if the following conditions are met:

(i) a1 > 0

(ii)

∣∣∣∣
a1 a3

1 a2

∣∣∣∣ > 0

(iii) a3 > 0.

Thus the roots of |ξI − An| = 0 have negative real parts if
∣∣∣∣∣∣∣

256

672τ
+ d ∆nd +

d2

τ

1
256

672τ
d + d2 + ∆n

∣∣∣∣∣∣∣
> 0.

Thus, the eigenvalues of An have negative real parts if

d

(
256

672τ
+ d

)2

+

(
256

672τ
+ d

)
∆n −∆nd− d2

τ
> 0. (7.10)

Now recalling that

d =
416

672τ

∆n =
672

ρ
λn − 416

672τ 2
,

a simple calculation reveals that the inequality in (7.10) is true if λn > 0. Thus the eigen-
values of An have negative real parts.

From (7.8), (7.9) we have



vn(t)

v
′
n(t)

wn(t)


 = etAn




vn(0)

v
′
n(0)
0


 +

∫ t

0

e(t−s)An




0
fn(s)

0


 ds.

Remark 7.1: Since the eigenvalues of An have real parts negative we have

etAn




vn(0)

v
′
n(0)
0


 −→




0
0
0


 , as t →∞.
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8 Solution of the linearized model equation

In this section we proceed to solve (7.4), (7.5). For convenience we rewrite (7.4) and (7.5)
as follows:

vtt +
256

672τ
vt − 416

672τ 2
v − 672

ρ
vyy +

(
416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(
vs +

1

τ
v

)
ds

=
672

ρ2Ac

F − 672

ρ

(
416

672τ

)2

e−
416
672τ

tu(0, y). (8.1)

The initial and boundary conditions are

v(0, y) = 0,

vt(0, y) = 0, (8.2)

v(t, 0) = 0,

and

ρ

672

[
vy(t, b)− e−

416
672τ

tvy(0, b)
]

+
256ρ

(672)2τ

∫ t

0

e−
416
672τ

(t−s)vy(s, b)ds

+G(0+)e−
416
672τ

t = G(t). (8.3)

Set

w̃ = − ρ

672
e−

416
672τ

tvy(0, b) +
256ρ

(672)2τ

∫ t

0

e−
416
672τ

(t−s)vy(s, b)ds. (8.4)

Then equation (8.3) becomes

ρ

672
vy(t, b) + w̃ + G(0+)e−

416
672τ

t = G(t). (8.5)

Differentiating (8.3) we have

ρ

672

d

dt
vy(t, b)− 416

672τ
w̃ +

256ρ

(672)2τ
vy(t, b)− 416

672τ
G(0+)e−

416
672τ

t = G′(t), (8.6)

where we have assumed that G is sufficiently regular, e.g., G ∈ C1. From (8.5) and (8.6) we
have

ρ

672

d

dt
vy(t, b) +

ρ

672τ
vy(t, b) = G′(t) +

416

672τ
G(t), (8.7)

and from (8.2) we see that
vy(0, b) = 0. (8.8)

From (8.7), and (8.8) we thus see that we can give vy(t, b) explicitly in terms of the
function G. Thus we write

vy(t, b) = η(t)
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where η can be explicitly determined in terms of the function G. Thus, we replace (8.2) and
(8.3) by

v(0, y) = vt(0, y) = 0

v(t, 0) = 0 (8.9)

vy(t, b) = η(t).

We now proceed to solve (8.1) with initial and boundary conditions given by (8.9). To-
ward this goal let

Q(t, y) = v(t, y)− yη(t).

In terms of Q the equation (8.1) becomes

Qtt +
256

672τ
Qt − 416

672τ 2
Q− 672

ρ
Qyy +

(
416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(
Qs +

1

τ
Q

)
ds = f̃ , (8.10)

where

f̃ = f − yη
′′
(t)− 256

672τ
yη

′
(t) +

416

672τ 2
yη(t)−

(
416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

{
yη

′
(s) +

1

τ
yη(s)

}
ds.

For initial and boundary conditions we have

Q(0, y) = −yη(0)

Qt(0, y) = −yη
′
(0) (8.11)

Q(t, 0) = Qy(t, b) = 0.

Let us now consider the Sturm-Liouville problem

−Z
′′ − λZ = 0

Z(0) = 0 (8.12)

Z
′
(b) = 0.

The eigenvalue problem (8.12) has a system of eigenvalues µ1 < µ2 < . . . ↗ ∞ and a
corresponding orthonormal system of eigenfunctions ψ1, ψ2, . . . , ψn, . . .. Let

R(t, y) =

(
416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

{
Qs +

1

τ
Q

}
ds.

We now write

R(t, y) =
∞∑

n=1

rn(t)ψn(y),

f̃(t, y) =
∞∑

n=1

f̃n(t)ψn(y),

Q(t, y) =
∞∑

n=1

qn(t)ψn(y),
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and seek a solution for (8.10) and (8.11). Let

Ãn =




0 1 0

−∆̃n
−256

672τ
−1

d2

τ 2
d2 −d


 ,

where

∆̃n =
672

ρ
µn − 416

672τ 2
.

Then 


qn(t)
q′n(t)
rn(t)


 = etÃn




qn(0)

q
′
n(0)
0


 +

∫ t

0

e(t−s)Ãn




0

f̃n(s)
0


 ds,

where

qn(0) = −η(0)

∫ b

0

yψn(y)dy

q
′
n(0) = −η

′
(0)

∫ b

0

yψn(y)dy.

Once Q is determined the solution v for (7.4) and (7.5) is given by

v(t, y) = Q(t, y) + yη(t).

Remark 8.1 The eigenvalues of Ãn have negative real parts if µn > 0. This is established
using the Routh-Hurwitz theorem as was done earlier.
Remark 8.2 It can be shown that the eigenvalues of Ãn are such that their real parts are less
than a fixed negative real number for all n.
Remark 8.3 Because all the eigenvalues of Ãn have real parts negative, we have

etÃn




qn(0)

q
′
n(0)
0


 →




0
0
0


 , as t →∞.

9 Concluding remarks

The stress strain models of (6.5)–(6.6) given by

σ(ε, ε1) = ge(ε) + ε1

ε̇1 +
1

τ
ε1 = gv(ε, ε̇),

discussed in Section 6 are special cases of more general models in which one admits hetero-
geneity in the PC-molecules. Specifically, one might have a distribution of different classes
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of PC-molecules, each characterized by different internal strains εin depending on physical
properties such as length, relaxation time, etc. For example, the PC-molecules might have
differing relaxation times τ so that εin = εin(t, y; τ). For a continuum one would then have
a probability distribution P (τ) on τ ∈ T , where T is the set of possible relaxation times.
The corresponding stress strain models are then given by

σ(t, y; P ) = ge(ε(t, y), ε̇(t, y)) + γ

∫

T
εin(t, y; τ)dP (τ), (9.1)

where εin(t, y; τ) satisfies, for each τ ∈ T ,

˙εin(t, y; τ) +
1

τ
εin(t, y; τ) = gv(ε(t, y), ε̇(t, y)). (9.2)

The models we used with shear data in Section 6 required only a simple Dirac delta measure
dP (τ) = δτ1(τ)dτ with εin = ε1 then satisfying

ε̇1 +
1

τ1

ε1 = gv(ε, ε̇)

in order to obtain reasonable fits to the experimental data. We compare this with the situ-
ation for tensile deformations reported in [4, 5] where the data required multiple relaxation
times in the model so that the measure P had atoms at τ1 and τ2, (i.e., the measure is
composed of Dirac measures concentrated at τ1 and τ2), and the constitutive law led to the
model

σ(t, y; P ) = ge(ε(t, y), ε̇(t, y)) + γ1ε1(t, y; τ1) + γ2ε2(t, y; τ2)

ε̇1 +
1

τ1

ε1 =
d

dt
gv(ε, ε̇)

ε̇2 +
1

τ2

ε2 =
d

dt
gv(ε, ε̇).

In the shear studies, we found that the nonlinear models (specifically, gv) were essential in
describing our data, but a simple uniform relaxation time was adequate for the PC-molecules.
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